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In this paper we study numerically an ensemble of random driving logistic maps. There are two accessible
cases of on-off intermittency in the system for different values of parameters. The first one corresponds to the
loss of stability of the fixed point, while the second one is due to the instability of the synchronous motion of
the ensemble. It shows that the two cases of intermittency belong to the same class of universality.

PACS number(s): 05.45.+b

Complex systems, ranging from economic markets and
ecosystems to earthquakes and turbulent fluids, have gener-
ated a lot of research interest in recent years. The most strik-
ing feature of many composite systems containing a large
number of elements is that fascinating global phenomena
arise out of seemingly simple local dynamics. It is then of
considerable importance to investigate the physics generic to
such spatially extend systems. Much more work [1-7] has
been done on the so-called one-dimensional diffussively
coupled map lattices (CML’s) given by
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where n is the discrete time step, i is the lattice point, and
f(y) prescribes the local dynamics at each lattice site. A
different but related class of spatiotemporal model systems
being considered is the following noise-driven uncoupled
map lattices (UCML’s):

.YS3-1=F(y£;i)’a£1i))’ (2)

where @’ can be a random variable influncing the the dy-
namics at site i and

FOy$0=fu"). 3)

This type of model may be motivated in part by considering
a hypothetical physical situation in which a system consist-
ing of L identical units is embedded in a noisy environment.
If the coupling between units is sufficently weak, it can be
neglected in the first approximation [8,9]. In our paper, the
special case of af,i)= &, will be studied, where £, is a random
variable. This corresponds to a random background that is
homogeneous in space.

Recently, a type of intermittency behavior known as “on-
off intermittency”” has been reported [10—12]. This intermit-
tency is the competition of two states. The ‘“‘on” state is a
short burst while the “off” state is a long period of constant
state. A set of five coupled differential equations which can
produce “on-off intermittency” was given by Platt, Sprigel,
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and Tresser [10]. And a simpler model of a one parameter
random driving map was also studied in detail [11]. At the
onset of intermittency behavior, the distribution of laminar
phase exhibits a universal asymptotic —3/2 power law. The
mean laminar phase displays a power law as a function of the
coupling strength with a critical exponent —1 . On the other
hand, Yu, Ott, and Chen [13] have studied a class of two-
dimensional maps with randomly varying parameters. These
maps exhibit so-called snapshot attractors. During the itera-
tion, the size of the snapshot attractor can undergo a form of
intermittency behavior that is similar to on-off intermittency.
Heagy, Platt, and Hammel claimed that these two behaviors
had some essential difference [11]. We found, however, that
in a random driving UCML with local function of logistic
map, both phenomena can be observed. The same scaling
relations are found for both attractors. It seems that the two
manifestation of intermittency belong to the same class of
universality.
The maps we study are of the form

Yit1=z.f ), @
where i=1, 2, ..., L, labels the ith particle (i.e., initial con-
dition), and

f»=y(1-y), ®)

z,=ax,+tb, (6)

with x,, a random variable uniformly distributed in interval
[0,1]. The inequalities

a>0, b>0, a+b<4 @
should be satisfied because the iteration of Eq. (4) must be
bounded. These conditions define a triangle in the a-b plane.
A total number L of initial conditions in interval [0,1] with
uniform distribution is taken. And the values of control pa-
rameter z,, at a certain step of iteration are identical for every
initial condition. This means that all the initial conditions
iterate with the same function.
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FIG. 1. The Lyapunov exponent for a single map with a=1.0.

Chaotical or periodic motion in a single map is character-
ized by a positive or negative Lyapunov exponent defined by

dyn+1
dy,

. (8)

o
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A= lim 172 In
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For the independence of the sites in UCML’s, the Lyapunov
exponents are equal to each other for all the sites. We assume
for the moment that a = 1.0 in Eq. (6). Numerical calculation
for a single map shows that (see Fig. 1) with the increasing
of the value of b, the Lyapunov exponent A increases gradu-
ally to zero, and then decreases to a minimum, but it will
eventually increase beyond zero. So there are two zero points
of Lyapunov exponents corresponding to two critical values
b;=0.54 and b,=2.82. With different values of a we obtain
two critical curves in the a-b plane which divide the triangle
(7) into three regions (see Fig. 2). Numerical simulation
shows that the states in each region are different from each
other.

The first critical curve (with b=5) corresponds to the
loss of stability of the fixed point y,=0. It is a stable attrac-
tor when b<b;, and becomes unstable when b>b;. This
curve is determined by the equation [11]

(b;+1)In(by+1)—1—b,lnb,=0. (9)

This corresponds to the onset for “on-off intermittency” of
signal as y, . This phenomenon can be observed even for a
single map as studied in Refs. [10—12]. However, for differ-
ent initial conditions even with values of b beyond this criti-
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FIG. 2. The phase diagram in the a-b plane. Line I is the onset
condition for the “‘on-off intermittency”’ of signal as y,,, and line II
as s, .

D

FIG. 3. The mean amplitude of signal y, vs the variation from
the critical line (b—b;), with a=1.0. The least-square fit is
(y)=0.92(b—0.54).

cal point, the motion of the large number of particles in the
system is always synchronous, i.e., yE,i)= y, for all i, though
the motion of a single site is random. The negative Lyapunov
exponent implies that after a long transient time all the par-
ticles must clump at a single point. From the analytical study
in Ref. [11], the probability of laminar phases with length n
shows a power-law distribution with an exponential decay at
large size:

A (n)xnexp(—n/ny), (10)
where
n,<(b—by) % (11)
The mean laminar phases act as
(my<(b—by)~ . (12)

In addition, we find in numerical calculation that the mean
amplitude of signal y,,

N—-1
(yy=1lim — > y,<(b—by). (13)
N"'wN n=0

The numerical study for a=1 (see Fig. 3), shows that
(y)=0.92(b—0.54). From this, the critical value of b is ob-
tained as b; =0.54, in agreement with the first critical point
in Fig. 1.

Near the other critical curve b=b,, the behavior of the
particle distribution is similar to that in Ref. [13]. For ex-
ample, with a=1 and b=2.82, we may obtain a snapshot
attractor by sprinkling a large number of initial points uni-
formly in the interval [0,1], then iterating each point under
the map (4) for a large number of iterations. The size of the
snapshot attractor s, at time # is defined the same as in Ref.
[12]:

Sp=

1 L A 12
ZZ@%%%, (14)

i=1

where ¥, is the spatial average of y'" :
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FIG. 4. The size of the snapshot attractor s, vs the iterate steps
n on a linear scale with a=1.0, b=2.82. Below the threshold
7=10"2 the signal s, is considered to be in laminar phase. The size
of the ensemble used is L =200.

1 ‘
=g 2 9. (15)

Just beyond the critical value b,, the intermittency of the
signal as s, was observed. Figure 4 shows the intermittency
of s, on a linear scale. It can be seen that time intervals
where s, is extremely small are punctuated by a shorter burst
where s, is of order 1. As b increases from b,, the intervals
of time with s, of order 1 become more and more dense. We
may also call this intermittency ““on-off intermittency,” be-
cause it follows the same scaling relations as those found at
the first critical curve. Since near the second critical line, the
Lyapunov exponent A is a linear function of b, i.e,
A= B(b—b,), so it could also be used as the control param-
eter. Near the critical curve A=0 (i.e., b=b,) the laminar
phases have an asymptotic power-law distribution with an
exponential decay at large size:

A (n)cn3exp(—n/ny), (16)
with
g\ "2, (17)

Figure 5 shows the plot of A (n) from numerical simulation

In[As(n)]

FIG. 5. The numerical results for the distribution A ((n) of lami-
nar phases with L=20, a=1.0, (A) b=2.84, (O) b=2.90, and
(O) b=2.96. They are best fitted by Eq. (15) with the cutoffs 7,
respectively 1450, 135, and 50, shown as the solid curves.
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FIG. 6. The mean length (n) of laminar phases vs N with
a=1.0.

of maps (4) with a=1.0. A total of 10° intervals of laminar
phase were used to construct the distribution. The threshold
from a laminar phase is fixed at 7=10"2. Since the value of
ng is usually quite large (about 10— 10°%), it is not easy to
confirm numerically the scaling relation (16). For the mean
laminar phases (n), however, we find from Egs. (15) and
(16) that it should be of the form

(ny=2 nA (n)xnt2ecr"1, 18)

which is easier to confirm in numerical simulation. The least-
square fit of data in Fig. 6 shows that (n) o« 1/X. In addition,
the mean amplitude of signal s, is (s) o« \. This is similar to
that in Ref. [13].

From the above numerical calculation, we conclude that
these two manifestations of intermittency have all the same
critical exponents. The intermittency of signal y, is caused
by the instability of the fixed point y =0, while that of signal
s, is due to the instability of the orbit y,, . It is known that the
first case can be mapped into a random or chaotic walk prob-
lem for random or chaotic driving. The step length is
r,=1Inz, and the sign of (r,) determines the stabilities of the
fixed point y =0 of iteration (4). The distribution of laminar
phases and other results can be calculated analytically. Much
more detail can be found in Ref. [11]. For the second case it
is not easy to map the motion of s, into a random or chaotic
walk. However, the same scalling behavior might imply that
there must be some connection between these two problems.
We also presume that on-off intermittency might be observed
near every zero point of the Lyapunov exponent for many
cases.

It should also be pointed out that some other interesting
things are expected near the b axis (i.e., as a—0). Just on
the b axis, there is a cascade of period doubling bifurcations
as well as many period windows. They disappear completely
for the strong influence of random driving, though at small
values of a these bifurcations can still be observed. The
crossover of these two situations will be studied elsewhere.
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